Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 3 de 3
Фильтр
1.
Proc Natl Acad Sci U S A ; 119(28): e2118260119, 2022 07 12.
Статья в английский | MEDLINE | ID: covidwho-1908380

Реферат

Type VI CRISPR-Cas systems have been repurposed for various applications such as gene knockdown, viral interference, and diagnostics. However, the identification and characterization of thermophilic orthologs will expand and unlock the potential of diverse biotechnological applications. Herein, we identified and characterized a thermostable ortholog of the Cas13a family from the thermophilic organism Thermoclostridium caenicola (TccCas13a). We show that TccCas13a has a close phylogenetic relation to the HheCas13a ortholog from the thermophilic bacterium Herbinix hemicellulosilytica and shares several properties such as thermostability and inability to process its own pre-CRISPR RNA. We demonstrate that TccCas13a possesses robust cis and trans activities at a broad temperature range of 37 to 70 °C, compared with HheCas13a, which has a more limited range and lower activity. We harnessed TccCas13a thermostability to develop a sensitive, robust, rapid, and one-pot assay, named OPTIMA-dx, for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection. OPTIMA-dx exhibits no cross-reactivity with other viruses and a limit of detection of 10 copies/µL when using a synthetic SARS-CoV-2 genome. We used OPTIMA-dx for SARS-CoV-2 detection in clinical samples, and our assay showed 95% sensitivity and 100% specificity compared with qRT-PCR. Furthermore, we demonstrated that OPTIMA-dx is suitable for multiplexed detection and is compatible with the quick extraction protocol. OPTIMA-dx exhibits critical features that enable its use at point of care (POC). Therefore, we developed a mobile phone application to facilitate OPTIMA-dx data collection and sharing of patient sample results. This work demonstrates the power of CRISPR-Cas13 thermostable enzymes in enabling key applications in one-pot POC diagnostics and potentially in transcriptome engineering, editing, and therapies.


Тема - темы
Bacterial Proteins , COVID-19 , CRISPR-Associated Proteins , Clostridiales , Endodeoxyribonucleases , Point-of-Care Testing , SARS-CoV-2 , Bacterial Proteins/chemistry , Bacterial Proteins/classification , Bacterial Proteins/genetics , Biotechnology , COVID-19/diagnosis , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/classification , CRISPR-Associated Proteins/genetics , Clostridiales/enzymology , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/classification , Endodeoxyribonucleases/genetics , Enzyme Stability , Hot Temperature , Humans , Phylogeny , SARS-CoV-2/isolation & purification
2.
Bioorg Chem ; 112: 104925, 2021 07.
Статья в английский | MEDLINE | ID: covidwho-1198631

Реферат

Antibiotic resistance and emerging viral pandemics have posed an urgent need for new anti-infective drugs. By screening our microbial extract library against the main protease of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the notorious ESKAPE pathogens, an active fraction was identified and purified, leading to an initial isolation of adipostatins A (1) and B (2). In order to diversify the chemical structures of adipostatins toward enhanced biological activities, a type III polyketide synthase was identified from the native producer, Streptomyces davawensis DSM101723, and was subsequently expressed in an E. coli host, resulting in the isolation of nine additional adipostatins 3-11, including two new analogs (9 and 11). The structures of 1-11 were established by HRMS, NMR, and chemical derivatization, including using a microgram-scale meta-chloroperoxybenzoic acid epoxidation-MS/MS analysis to unambiguously determine the double bond position in the alkyl chain. The present study discovered SARS-CoV-2 main protease inhibitory activity for the class of adipostatins for the first time. Several of the adipostatins isolated also exhibited antimicrobial activity against selected ESKAPE pathogens.


Тема - темы
Acyltransferases/metabolism , Anti-Infective Agents/chemistry , Bacterial Proteins/metabolism , Resorcinols/chemistry , Acyltransferases/antagonists & inhibitors , Acyltransferases/classification , Acyltransferases/genetics , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/classification , Bacterial Proteins/genetics , COVID-19/pathology , COVID-19/virology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Drug Evaluation, Preclinical , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Inhibitory Concentration 50 , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Molecular Conformation , Phylogeny , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Resorcinols/isolation & purification , Resorcinols/metabolism , Resorcinols/pharmacology , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Streptomyces/enzymology , Tandem Mass Spectrometry
3.
J Proteome Res ; 19(11): 4718-4729, 2020 11 06.
Статья в английский | MEDLINE | ID: covidwho-748160

Реферат

We present METATRYP version 2 software that identifies shared peptides across the predicted proteomes of organisms within environmental metaproteomics studies to enable accurate taxonomic attribution of peptides during protein inference. Improvements include ingestion of complex sequence assembly data categories (metagenomic and metatranscriptomic assemblies, single cell amplified genomes, and metagenome assembled genomes), prediction of the least common ancestor (LCA) for a peptide shared across multiple organisms, increased performance through updates to the backend architecture, and development of a web portal (https://metatryp.whoi.edu). Major expansion of the marine METATRYP database with predicted proteomes from environmental sequencing confirms a low occurrence of shared tryptic peptides among disparate marine microorganisms, implying tractability for targeted metaproteomics. METATRYP was designed to facilitate ocean metaproteomics and has been integrated into the Ocean Protein Portal (https://oceanproteinportal.org); however, it can be readily applied to other domains. We describe the rapid deployment of a coronavirus-specific web portal (https://metatryp-coronavirus.whoi.edu/) to aid in use of proteomics on coronavirus research during the ongoing pandemic. A coronavirus-focused METATRYP database identified potential SARS-CoV-2 peptide biomarkers and indicated very few shared tryptic peptides between SARS-CoV-2 and other disparate taxa analyzed, sharing <1% peptides with taxa outside of the betacoronavirus group, establishing that taxonomic specificity is achievable using tryptic peptide-based proteomic diagnostic approaches.


Тема - темы
Aquatic Organisms/genetics , Coronavirus/genetics , Metagenomics/methods , Proteome , Software , Bacterial Proteins/classification , Bacterial Proteins/genetics , Betacoronavirus/genetics , COVID-19 , Cluster Analysis , Coronavirus Infections/virology , Humans , Molecular Sequence Annotation , Pandemics , Peptides/classification , Peptides/genetics , Pneumonia, Viral/virology , Proteome/classification , Proteome/genetics , SARS-CoV-2 , Sequence Analysis, Protein , Transcriptome/genetics , Viral Proteins/classification , Viral Proteins/genetics
Критерии поиска